Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 6(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37699657

RESUMEN

Previously, we and others have shown that SARS-CoV-2 spike-specific IgG antibodies play a major role in disease severity in COVID-19 by triggering macrophage hyperactivation, disrupting endothelial barrier integrity, and inducing thrombus formation. This hyperinflammation is dependent on high levels of anti-spike IgG with aberrant Fc tail glycosylation, leading to Fcγ receptor hyperactivation. For development of immune-regulatory therapeutics, drug specificity is crucial to counteract excessive inflammation whereas simultaneously minimizing the inhibition of antiviral immunity. We here developed an in vitro activation assay to screen for small molecule drugs that specifically counteract antibody-induced pathology. We identified that anti-spike-induced inflammation is specifically blocked by small molecule inhibitors against SYK and PI3K. We identified SYK inhibitor entospletinib as the most promising candidate drug, which also counteracted anti-spike-induced endothelial dysfunction and thrombus formation. Moreover, entospletinib blocked inflammation by different SARS-CoV-2 variants of concern. Combined, these data identify entospletinib as a promising treatment for severe COVID-19.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Anticuerpos Antivirales , Inflamación/tratamiento farmacológico , Inmunoglobulina G/farmacología
2.
Front Immunol ; 14: 1116435, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006318

RESUMEN

While immunoglobulin A (IgA) is well known for its neutralizing and anti-inflammatory function, it is becoming increasingly clear that IgA can also induce human inflammatory responses by various different immune cells. Yet, little is known about the relative role of induction of inflammation by the two IgA subclasses i.e. IgA1, most prominent subclass in circulation, and IgA2, most prominent subclass in the lower intestine. Here, we set out to study the inflammatory function of IgA subclasses on different human myeloid immune cell subsets, including monocytes, and in vitro differentiated macrophages and intestinal CD103+ dendritic cells (DCs). While individual stimulation with IgA immune complexes only induced limited inflammatory responses by human immune cells, both IgA subclasses strongly amplified pro-inflammatory cytokine production upon co-stimulation with Toll-like receptor (TLR) ligands such as Pam3CSK4, PGN, and LPS. Strikingly, while IgA1 induced slightly higher or similar levels of pro-inflammatory cytokines by monocytes and macrophages, respectively, IgA2 induced substantially more inflammation than IgA1 by CD103+ DCs. In addition to pro-inflammatory cytokine proteins, IgA2 also induced higher mRNA expression levels, indicating that amplification of pro-inflammatory cytokine production is at least partially regulated at the level of gene transcription. Interestingly, cytokine amplification by IgA1 was almost completely dependent on Fc alpha receptor I (FcαRI), whilst blocking this receptor only partially reduced cytokine induction by IgA2. In addition, IgA2-induced amplification of pro-inflammatory cytokines was less dependent on signaling through the kinases Syk, PI3K, and TBK1/IKKϵ. Combined, these findings indicate that IgA2 immune complexes, which are most abundantly expressed in the lower intestine, particularly promote inflammation by human CD103+ intestinal DCs. This may serve an important physiological function upon infection, by enabling inflammatory responses by this otherwise tolerogenic DC subset. Since various inflammatory disorders are characterized by disturbances in IgA subclass balance, this may also play a role in the induction or exacerbation of chronic intestinal inflammation.


Asunto(s)
Complejo Antígeno-Anticuerpo , Inmunoglobulina A , Humanos , Inflamación , Células Dendríticas , Citocinas
3.
EBioMedicine ; 87: 104408, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36529104

RESUMEN

BACKGROUND: Afucosylated IgG1 responses have only been found against membrane-embedded epitopes, including anti-S in SARS-CoV-2 infections. These responses, intrinsically protective through enhanced FcγRIIIa binding, can also trigger exacerbated pro-inflammatory responses in severe COVID-19. We investigated if the BNT162b2 SARS-CoV-2 mRNA also induced afucosylated IgG responses. METHODS: Blood from vaccinees during the first vaccination wave was collected. Liquid chromatography-Mass spectrometry (LC-MS) was used to study anti-S IgG1 Fc glycoprofiles. Responsiveness of alveolar-like macrophages to produce proinflammatory cytokines in presence of sera and antigen was tested. Antigen-specific B cells were characterized and glycosyltransferase levels were investigated by Fluorescence-Activated Cell Sorting (FACS). FINDINGS: Initial transient afucosylated anti-S IgG1 responses were found in naive vaccinees, but not in antigen-experienced ones. All vaccinees had increased galactosylated and sialylated anti-S IgG1. Both naive and antigen-experienced vaccinees showed relatively low macrophage activation potential, as expected, due to the low antibody levels for naive individuals with afucosylated IgG1, and low afucosylation levels for antigen-experienced individuals with high levels of anti-S. Afucosylation levels correlated with FUT8 expression in antigen-specific plasma cells in naive individuals. Interestingly, low fucosylation of anti-S IgG1 upon seroconversion correlated with high anti-S IgG levels after the second dose. INTERPRETATION: Here, we show that BNT162b2 mRNA vaccination induces transient afucosylated anti-S IgG1 responses in naive individuals. This observation warrants further studies to elucidate the clinical context in which potent afucosylated responses would be preferred. FUNDING: LSBR1721, 1908; ZonMW10430012010021, 09150161910033, 10430012010008; DFG398859914, 400912066, 390884018; PMI; DOI4-Nr. 3; H2020-MSCA-ITN 721815.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Vacuna BNT162 , Inmunoglobulina G , COVID-19/prevención & control , SARS-CoV-2 , Anticuerpos Antivirales , Vacunación
4.
Blood ; 138(16): 1481-1489, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34315173

RESUMEN

A subset of patients with coronavirus disease 2019 (COVID-19) become critically ill, suffering from severe respiratory problems and also increased rates of thrombosis. The causes of thrombosis in severely ill patients with COVID-19 are still emerging, but the coincidence of critical illness with the timing of the onset of adaptive immunity could implicate an excessive immune response. We hypothesized that platelets might be susceptible to activation by anti-severe acute respiratory syndrome coronavirus 2 (anti-SARS-CoV-2) antibodies and might contribute to thrombosis. We found that immune complexes containing recombinant SARS-CoV-2 spike protein and anti-spike immunoglobulin G enhanced platelet-mediated thrombosis on von Willebrand factor in vitro, but only when the glycosylation state of the Fc domain was modified to correspond with the aberrant glycosylation previously identified in patients with severe COVID-19. Furthermore, we found that activation was dependent on FcγRIIA, and we provide in vitro evidence that this pathogenic platelet activation can be counteracted by the therapeutic small molecules R406 (fostamatinib) and ibrutinib, which inhibit tyrosine kinases Syk and Btk, respectively, or by the P2Y12 antagonist cangrelor.


Asunto(s)
Plaquetas/patología , COVID-19/complicaciones , Inmunoglobulina G/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Trombosis/patología , Factor de von Willebrand/metabolismo , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Complejo Antígeno-Anticuerpo/inmunología , Plaquetas/inmunología , Plaquetas/metabolismo , COVID-19/inmunología , COVID-19/virología , Glicosilación , Humanos , Activación Plaquetaria/inmunología , Trombosis/inmunología , Trombosis/virología , Factor de von Willebrand/genética
5.
Cells ; 10(5)2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-34065953

RESUMEN

Macrophages play a key role in induction of inflammatory responses. These inflammatory responses are mostly considered to be instigated by activation of pattern recognition receptors (PRRs) or cytokine receptors. However, recently it has become clear that also antibodies and pentraxins, which can both activate Fc receptors (FcRs), induce very powerful inflammatory responses by macrophages that can even be an order of magnitude greater than PRRs. While the physiological function of this antibody-dependent inflammation (ADI) is to counteract infections, undesired activation or over-activation of this mechanism will lead to pathology, as observed in a variety of disorders, including viral infections such as COVID-19, chronic inflammatory disorders such as Crohn's disease, and autoimmune diseases such as rheumatoid arthritis. In this review we discuss how physiological ADI provides host defense by inducing pathogen-specific immunity, and how erroneous activation of this mechanism leads to pathology. Moreover, we will provide an overview of the currently known signaling and metabolic pathways that underlie ADI, and how these can be targeted to counteract pathological inflammation.


Asunto(s)
Anticuerpos/metabolismo , Proteína C-Reactiva/metabolismo , Inflamación/inmunología , Componente Amiloide P Sérico/metabolismo , Anticuerpos/inmunología , Proteína C-Reactiva/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata , Inflamación/metabolismo , Inflamación/microbiología , Macrófagos/inmunología , Macrófagos/metabolismo , Redes y Vías Metabólicas/inmunología , Receptores Fc/metabolismo , Componente Amiloide P Sérico/inmunología , Transducción de Señal/inmunología
6.
Sci Transl Med ; 13(596)2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33979301

RESUMEN

Patients diagnosed with coronavirus disease 2019 (COVID-19) become critically ill primarily around the time of activation of the adaptive immune response. Here, we provide evidence that antibodies play a role in the worsening of disease at the time of seroconversion. We show that early-phase severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) spike protein-specific immunoglobulin G (IgG) in serum of critically ill COVID-19 patients induces excessive inflammatory responses by human alveolar macrophages. We identified that this excessive inflammatory response is dependent on two antibody features that are specific for patients with severe COVID-19. First, inflammation is driven by high titers of anti-spike IgG, a hallmark of severe disease. Second, we found that anti-spike IgG from patients with severe COVID-19 is intrinsically more proinflammatory because of different glycosylation, particularly low fucosylation, of the antibody Fc tail. Low fucosylation of anti-spike IgG was normalized in a few weeks after initial infection with SARS-CoV-2, indicating that the increased antibody-dependent inflammation mainly occurs at the time of seroconversion. We identified Fcγ receptor (FcγR) IIa and FcγRIII as the two primary IgG receptors that are responsible for the induction of key COVID-19-associated cytokines such as interleukin-6 and tumor necrosis factor. In addition, we show that anti-spike IgG-activated human macrophages can subsequently break pulmonary endothelial barrier integrity and induce microvascular thrombosis in vitro. Last, we demonstrate that the inflammatory response induced by anti-spike IgG can be specifically counteracted by fostamatinib, an FDA- and EMA-approved therapeutic small-molecule inhibitor of Syk kinase.


Asunto(s)
Anticuerpos Antivirales/química , COVID-19/inmunología , Inmunoglobulina G/química , Macrófagos Alveolares/inmunología , Glicosilación , Humanos , Inflamación , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/inmunología
8.
Science ; 371(6532)2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33361116

RESUMEN

Immunoglobulin G (IgG) antibodies are crucial for protection against invading pathogens. A highly conserved N-linked glycan within the IgG-Fc tail, which is essential for IgG function, shows variable composition in humans. Afucosylated IgG variants are already used in anticancer therapeutic antibodies for their increased activity through Fc receptors (FcγRIIIa). Here, we report that afucosylated IgG (approximately 6% of total IgG in humans) are specifically formed against enveloped viruses but generally not against other antigens. This mediates stronger FcγRIIIa responses but also amplifies brewing cytokine storms and immune-mediated pathologies. Critically ill COVID-19 patients, but not those with mild symptoms, had high concentrations of afucosylated IgG antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), amplifying proinflammatory cytokine release and acute phase responses. Thus, antibody glycosylation plays a critical role in immune responses to enveloped viruses, including COVID-19.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Inmunoglobulina G/inmunología , SARS-CoV-2/inmunología , Adulto , Anciano , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/química , COVID-19/fisiopatología , Células Cultivadas , Enfermedad Crítica , Citomegalovirus/inmunología , Femenino , Fucosa/análisis , Glicosilación , VIH/inmunología , Vacunas contra Hepatitis B/inmunología , Humanos , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/química , Inflamación , Interleucina-6/biosíntesis , Interleucina-6/inmunología , Macrófagos/inmunología , Masculino , Persona de Mediana Edad , Parvovirus B19 Humano/inmunología , Índice de Severidad de la Enfermedad , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas de Subunidad/inmunología , Adulto Joven
9.
J Immunol ; 205(12): 3400-3407, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33188071

RESUMEN

IgG Abs are crucial for various immune functions, including neutralization, phagocytosis, and Ab-dependent cellular cytotoxicity. In this study, we identified another function of IgG by showing that IgG immune complexes elicit distinct cytokine profiles by human myeloid immune cells, which are dependent on FcγR activation by the different IgG subclasses. Using monoclonal IgG subclasses with identical Ag specificity, our data demonstrate that the production of Th17-inducing cytokines, such as TNF, IL-1ß, and IL-23, is particularly dependent on IgG2, whereas type I IFN responses are controlled by IgG3, and IgG1 is able to regulate both. In addition, we identified that subclass-specific cytokine production is orchestrated at the posttranscriptional level through distinct glycolytic reprogramming of human myeloid immune cells. Combined, these data identify that IgG subclasses provide pathogen- and cell type-specific immunity through differential metabolic reprogramming by FcγRs. These findings may be relevant for future design of Ab-related therapies in the context of infectious diseases, chronic inflammation, and cancer.


Asunto(s)
Citocinas/inmunología , Inmunoglobulina G/inmunología , Células Mieloides/inmunología , Receptores de IgG/inmunología , Humanos , Células Mieloides/citología
10.
J Immunol ; 205(9): 2511-2518, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32967931

RESUMEN

Microglia are phagocytic cells involved in homeostasis of the brain and are key players in the pathogenesis of multiple sclerosis (MS). A hallmark of MS diagnosis is the presence of IgG Abs, which appear as oligoclonal bands in the cerebrospinal fluid. In this study, we demonstrate that myelin obtained post mortem from 8 out of 11 MS brain donors is bound by IgG Abs. Importantly, we show that IgG immune complexes strongly potentiate activation of primary human microglia by breaking their tolerance for microbial stimuli, such as LPS and Poly I:C, resulting in increased production of key proinflammatory cytokines, such as TNF and IL-1ß. We identified FcγRI and FcγRIIa as the two main responsible IgG receptors for the breaking of immune tolerance of microglia. Combined, these data indicate that IgG immune complexes potentiate inflammation by human microglia, which may play an important role in MS-associated inflammation and the formation of demyelinating lesions.


Asunto(s)
Complejo Antígeno-Anticuerpo/inmunología , Tolerancia Inmunológica/inmunología , Inmunoglobulina G/inmunología , Microglía/inmunología , Adulto , Anciano , Encéfalo/inmunología , Humanos , Inflamación/inmunología , Interleucina-1beta/inmunología , Persona de Mediana Edad , Esclerosis Múltiple/inmunología , Vaina de Mielina/inmunología , Poli I-C/inmunología , Receptores de IgG/inmunología , Factores de Necrosis Tumoral/inmunología
12.
J Immunol ; 203(1): 225-235, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31118224

RESUMEN

C-reactive protein (CRP) is an acute-phase protein produced in high quantities by the liver in response to infection and during chronic inflammatory disorders. Although CRP is known to facilitate the clearance of cell debris and bacteria by phagocytic cells, the role of CRP in additional immunological functions is less clear. This study shows that complexed CRP (phosphocholine [PC]:CRP) (formed by binding of CRP to PC moieties), but not soluble CRP, synergized with specific TLRs to posttranscriptionally amplify TNF, IL-1ß, and IL-23 production by human inflammatory macrophages. We identified FcγRI and IIa as the main receptors responsible for initiating PC:CRP-induced inflammation. In addition, we identified the underlying mechanism, which depended on signaling through kinases Syk, PI3K, and AKT2, as well as glycolytic reprogramming. These data indicate that in humans, CRP is not only a marker but also a driver of inflammation by human macrophages. Therefore, although providing host defense against bacteria, PC:CRP-induced inflammation may also exacerbate pathology in the context of disorders such as atherosclerosis.


Asunto(s)
Proteína C-Reactiva/metabolismo , Inflamación/inmunología , Hígado/fisiología , Receptores de IgG/metabolismo , Aterosclerosis/inmunología , Proteína C-Reactiva/química , Células Cultivadas , Reprogramación Celular , Citocinas/metabolismo , Glucólisis , Humanos , Mediadores de Inflamación/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilcolina/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Quinasa Syk/metabolismo , Receptores Toll-Like/metabolismo
13.
Front Immunol ; 10: 739, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024565

RESUMEN

Antigen-presenting cells (APCs) such as dendritic cells (DCs) are crucial for initiation of adequate inflammatory responses, which critically depends on the cooperated engagement of different receptors. In addition to pattern recognition receptors (PRRs), Fc gamma receptors (FcγRs) have recently been identified to be important in induction of inflammation by DCs. FcγRs that recognize IgG immune complexes, which are formed upon opsonization of pathogens, induce pro-inflammatory cytokine production through cross-talk with PRRs such as Toll-like receptors (TLRs). While the physiological function of FcγR-TLR cross-talk is to provide protective immunity against invading pathogens, undesired activation of FcγR-TLR cross-talk, e.g., by autoantibodies, also plays a major role in the development of chronic inflammatory disorders such as rheumatoid arthritis (RA). Yet, the molecular mechanisms of FcγR-TLR cross-talk are still largely unknown. Here, we identified that FcγR-TLR cross-talk-induced cytokine production critically depends on activation of the transcription factor interferon regulatory factor 5 (IRF5), which results from induction of two different pathways that converge on IRF5 activation. First, TLR stimulation induced phosphorylation of TBK1/IKKε, which is required for IRF5 phosphorylation and subsequent activation. Second, FcγR stimulation induced nuclear translocation of IRF5, which is essential for gene transcription by IRF5. We identified that IRF5 activation by FcγR-TLR cross-talk amplifies pro-inflammatory cytokine production by increasing cytokine gene transcription, but also by synergistically inducing glycolytic reprogramming, which is another essential process for induction of inflammatory responses by DCs. Combined, here we identified IRF5 as a pivotal component of FcγR-TLR cross-talk in human APCs. These data may provide new potential targets to suppress chronic inflammation in autoantibody-associated diseases that are characterized by undesired or excessive FcγR-TLR cross-talk, such as RA, systemic sclerosis, and systemic lupus erythematous.


Asunto(s)
Células Dendríticas/inmunología , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Receptores de IgG/metabolismo , Receptores Toll-Like/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis , Transporte Activo de Núcleo Celular , Células Dendríticas/metabolismo , Glucólisis/inmunología , Humanos , Quinasa I-kappa B/inmunología , Quinasa I-kappa B/metabolismo , Técnicas In Vitro , Inflamación/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Modelos Inmunológicos , Monocitos/inmunología , Monocitos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Cross-Talk/inmunología , Transcripción Genética
14.
Eur J Immunol ; 48(11): 1796-1809, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30184252

RESUMEN

Type I and type III interferons (IFNs) are fundamental for antiviral immunity, but prolonged expression is also detrimental to the host. Therefore, upon viral infection high levels of type I and III IFNs are followed by a strong and rapid decline. However, the mechanisms responsible for this suppression are still largely unknown. Here, we show that IgG opsonization of model viruses influenza and respiratory syncytial virus (RSV) strongly and selectively suppressed type I and III IFN production by various human antigen-presenting cells. This suppression was induced by selective inhibition of TLR, RIG-I-like receptor, and STING-dependent type I and III IFN gene transcription. Surprisingly, type I and III IFN suppression was mediated by Syk and PI3K independent inhibitory signaling via FcγRIIa, thereby identifying a novel non-canonical FcγRIIa pathway in myeloid cells. Together, these results indicate that IgG opsonization of viruses functions as a novel negative feedback mechanism in humans, which may play a role in the selective suppression of type I and III IFN responses during the late-phase of viral infections. In addition, activation of this pathway may be used as a tool to limit type I IFN-associated pathology.


Asunto(s)
Interferón Tipo I/inmunología , Interferones/inmunología , Células Mieloides/inmunología , Receptores de IgG/inmunología , Animales , Células Presentadoras de Antígenos/inmunología , Células Cultivadas , Femenino , Humanos , Inmunoglobulina G/inmunología , Ratones , Ratones Endogámicos C57BL , Virus Sincitiales Respiratorios/inmunología , Transducción de Señal/inmunología , Quinasa Syk/inmunología , Transcripción Genética/inmunología , Virosis/inmunología , Interferón lambda
15.
Nat Commun ; 9(1): 863, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29491406

RESUMEN

CD103+ dendritic cells (DC) are crucial for regulation of intestinal tolerance in humans. However, upon infection of the lamina propria this tolerogenic response is converted to an inflammatory response. Here we show that immunoglobulin A (IgA) immune complexes (IgA-IC), which are present after bacterial infection of the lamina propria, are important for the induction of inflammation by the human CD103+SIRPα+ DC subset. IgA-IC, by recognition through FcαRI, selectively amplify the production of proinflammatory cytokines TNF, IL-1ß and IL-23 by human CD103+ DCs. These cells then enhance inflammation by promoting Th17 responses and activating human intestinal innate lymphoid cells 3. Moreover, FcαRI-induced cytokine production is orchestrated via upregulation of cytokine translation and caspase-1 activation, which is dependent on glycolytic reprogramming mediated by kinases Syk, PI3K and TBK1-IKKε. Our data suggest that the formation of IgA-IC in the human intestine provides an environmental cue for the conversion of a tolerogenic to an inflammatory response.


Asunto(s)
Antígenos CD/inmunología , Células Dendríticas/inmunología , Cadenas alfa de Integrinas/inmunología , Intestinos/inmunología , Receptores Fc/inmunología , Reprogramación Celular , Glucólisis , Humanos , Inmunoglobulina A/inmunología , Interleucina-1beta/inmunología , Interleucina-23/inmunología , Intestinos/citología , Células Th17/inmunología
16.
J Immunol ; 199(12): 4124-4131, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29118246

RESUMEN

IgA is predominantly recognized to play an important role in host defense at mucosal sites, where it prevents invasion of pathogens by neutralization. Although it has recently become clear that IgA also mediates other immunological processes, little remains known about the potential of IgA to actively contribute to induction of inflammation, particularly in nonmucosal organs and tissues. In this article, we provide evidence that immune complex formation of serum IgA plays an important role in orchestration of inflammation in response to pathogens at various nonmucosal sites by eliciting proinflammatory cytokines by human macrophages, monocytes, and Kupffer cells. We show that opsonization of bacteria with serum IgA induced cross-talk between FcαRI and different TLRs, leading to cell type-specific amplification of proinflammatory cytokines, such as TNF-α, IL-1ß, IL-6, and IL-23. Furthermore, we demonstrate that the increased protein production of cytokines was regulated at the level of gene transcription, which was dependent on activation of kinases Syk and PI3K. Taken together, these data demonstrate that the immunological function of IgA is substantially more extensive than previously considered and suggest that serum IgA-induced inflammation plays an important role in orchestrating host defense by different cell types in nonmucosal tissues, including the liver, skin, and peripheral blood.


Asunto(s)
Complejo Antígeno-Anticuerpo/inmunología , Antígenos CD/inmunología , Citocinas/biosíntesis , Inmunoglobulina A/inmunología , Inflamación/inmunología , Macrófagos del Hígado/inmunología , Macrófagos/inmunología , Monocitos/inmunología , Receptor Cross-Talk/inmunología , Receptores Fc/inmunología , Receptores Toll-Like/inmunología , Citocinas/genética , Activación Enzimática , Humanos , Inmunoglobulina A/sangre , Inflamación/etiología , Proteínas Opsoninas/inmunología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Quinasa Syk/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...